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ABSTRACT 

This paper treats initial boundary value problems for first order 

linear systems of partial differential equations which are singular in 

time. 

in the system impose time invariant constraints while other equations 

describe the time evolution of certain variables. The equations of 

motion for an incompressible inviscid fluid are an example. 

the constraint that the divergence of the velocities is zero, and the 

remaining equations govern the time evolution of the velocities. We 

treat both the Cauchy problem and the initial boundary value problem for 

these systems. We show how many boundary conditions to specify as well 

as a prescription to determine the well-posedness of the boundary conditions 

To prove well-posedness we use normal mode analysis and pseudo-differential 

operators to obtain the necessary estimates. Examples of how to apply the 

theory are presected. 

Time singular systems are characterized by having some equations 

They have 
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I. Introduction 

In this paper we consider linear systems of partial differential 

equations of the Form 

n L 

(1.1) sw = 1 A.w + BW + F(t,x) 
t j = o  J 'j 

where S is a singular matrix. We consider the system (1.1) for t 

positive and IR n+l. The dependent 

variable w is a vector of dimension k and each of the coefficient 

matrices is a complex k X k matrix. We now define precisely what is 

meant by a time-singular system. 

(xo , ,xn) in a sub-domain of 

Definition 1.1 The system of equations (1.1) is a time-singular 

system if 

a) S is a singular matrix of rank r > 0, 

b) the polynomial 

has degree h in s for all values of 5 in IRn - (O}, 

and k - h = 2e, an even integer, 

c )  the roots s(<) of p(s,S) = 0 are purely imaginary for 

5 E Etn+', and 

d) there are smooth matrix functions P ( 6 )  and Q ( 5 )  such that 



where H ( E )  is a diagonal h X h matrix and E(5) and N are 

lower triangular 2e X 2e matrices, N being strictly lower 

triangular. Also P(S) and Q(S) along with their inverses are 

bounded in norm, independent of 5 .  

The lower order terms of equation (1.1) will be said to be 

admissible if the polynomial 

$ ( s , < )  = det I Ss-iA-S - BI 

also has degree h in s for > R for some value of R. 

One way that time-singular systems arise in applications is as 

the limit of hyperbolic systems that have some very large characteris- 

tic speeds. By taking the limit as the large speeds become infinite 

one can obtain a time-singular system. Kreiss [4] has studied hyper- 

bolic systems that have different characteristic speeds. 

Time-singular systems have both a hyperbolic character and an 

elliptic character. The integer h, giving the degree in s of the 

polymial p(s,c) (equation (l.Z)), is a measure of the hyperbolicity 

of the system and the integer h-k is a measure of the ellipticity. 

An example of a time-singular system is the following system of 

differential equations 

u = au + bu + px + cv + fl(t,x,y) 
v = av + bv 
t X Y 

t X Y - cu + f2(t’X’Y) 
+ pY 

o =  u + v + f3(t,x,y). 
X Y 



We have 

Also, 

For other examples of time-singular systems used in applications 

we refer to Oliger and Sundstrgm [ 8 ] .  

The above example is a linearized, constant coefficient model of the 

equations for an inviscid, incompressible fluid. 

inviscid, incompressible fluid can be viewed as a limiting case of the more 

general compressible inviscid flow equations, the limit being taken as the 

sound speed becomes infinite. 

The equations for an 

Of course, in applications one is frequently interested in systems 

with variable coefficients. 

equations the results obtained fo r  the case of constant coefficients extend 

However, whereas for many types of differential 



readily to the case of variable coefficients, for time-singular systems 

of partial differential equations this is not the case. The effects of 

I 

~ 

variable coefficients can significantly alter the behavior of the whole 

system. Similar behavior is described by Kreiss in [41 .  A s  an example 

we present the system. 

u + i u  + a(vx+i v ) = fl(t,x,y) 
X Y Y 

(1.4) 

t U + a v t  + V 
X 

i v  
Y 

If the coefficient a is constant, then by changing to the variable 

u' = u + av , one easily sees that (1.3) is a time-singular system. How- 

ever, if the coefficient a is variable, say a = bx , then the system 

(1.4) is seen to be equivalent to the equation 

U' 
t 

+ 

where u' = u + a v ,  and this is ill-posed as a Cauchy problem when b 

is positive. 

In spite of the above example, it appears that the methods developed 

in this paper can be used to treat particular variable coefficient 

c 

problems. 

case-by-case basis, The author conjectures that the results for the 

constant coefficient anelastic system can be extended to the variable 

coefficient systems that arise in fluid dynamics, (Oliger and Sundstrgm 

But at present these methods would have to be applied on a 

This paper is motivated by the desire to extend the results obtained 

by Kreiss [3] and Agmon, Douglis, and Nirenberg [l], for hyperbolic and 

elliptic systems of equations to other initial boundary value problems, 

particularly those that arise in fluid dynamics. Previously the author 
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extended the methods employed by Kreiss to incompletely parabolic systems, 

(Strikwerda [lo]). 

viscous compressible motion. This paper extends this theory to the study 

of inviscid incompressible fluid motion. 

initial boundary value problems of fluid dynamics we refer to Oliger and 

Sundstram [a 1. 

Incompletely parabolic systems arise in the study of 

For a more general discussion of 

As far as the author is aware of this is the only treatment of the 

initial boundary value problem for general time-singular systems. 

Cauchy Problem for the non-linear inviscid incompressible flow equations 

has been studied by numerous authors, see e.g. Milne-Thomson [ 6 ] .  

The 

For a treatment of a particular initial boundary value problem for 

an inviscid incompressible fluid see Judavir [ 2 ] .  

We now outline the course of this paper. In the next section we 

briefly develop a theory of time-singular pseudo-differential operators. 

We then consider the Cauchy problem for time-singular systems and then 

the initial boundary value problem. We show how many boundary conditions 

must be applied and we present a procedure to determine if a set of boun- 

dary conditions is well-posed. 

case, the linearized constant coefficient, ideal fluid flow equations and 

determine well-posed boundary conditions. 

Finally, we consider a special important 

11. Time-Singular Pseudo-Differential Operators 

In this section, we briefly develop a theory of time-singular 

pseudo-differential operators. 

theory of pseudo-differential operators and many of the results follow 

immediately from the usual theory. 

[ll], also see Nirenberg [7] and Strikwerda [lo]. 

The theory will be analogous to the usual 

Our presentation will follow Taylor 
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We first define three classes of symbols of pseudo-differential 

operators. For convenience we define 

s will always be a complex number, s = r) + iT. 

Also 

where a = alax , etc. 
xO 0 

Definition 2.1 For m, q E IR, 

1) Sq is the set of functions p(x,c) in C"( lRnx lRn) such 

that for all multi-indices a and f3 there is a constant C-, such 

that 
- 9 -  

2)  Spm is the set of functions p(t,x,s,S) in 

C"( IRt x Rn X (?(TI) X Rn) such that for all multi-indices CL and B 

there is a constant C such that a,a,b,B 

3 )  Ssm'q is the set of functions p(t,x,s,E) in 

C"( Et x IR" x Cn(q) x Rn) such that for all multi-indices a and 6 

r 

and all non-negative integers a and b there is a constant C a,CL,b,B 
such that 

-6- 



The Fourier transform of a function u(x) is 

and for a function u(t,x) its Laplace-Fourier transform is 

00 
-st -isex 

G ( s , S )  = (2n)-n'2 J e e u(t,x) dt d <  . 
0 iR 

We now define the corresponding pseudo-differential operators. 

Definition 2.2 If p(t,x,s,c) is in either Spm or SsmSq for 

some values of m and q then the pseudo-differential operator 

p(t,x,3t,Dx) is defined by 

p(t,x,3t,~x) is in pspm or pssrn*q if  p(t,x,s,c) is in spm or 

Ssm'q ,respectively. The operators P S S ~ ' ~  are called time-singular 

pseudo-differential operators and those in 

differential operators with the parameter 

PSp m are called pseudo- 

r! = Res. 

If p(x,5) is in Sq then the pseudo-differential operator 

p(x,D ) is defined 5y  
X 

and p(x,Dx) is in PSq.  

- 7- 



The theory of pseudo-differential operators in PSq is developed 
n 

in Taylor [ll] and also Nirenberg [7]. For operators in PSp see 

Strikwerda [lo]. 

We will allow symbols to be matrices and we will say the matrix 

is in, say psrn*q, if all its elements are in psmSq. 

We now define several norms and function spaces which will be 

used in the following sections. 

n+l 

where s = rl + i'r, 
00 

2 = / / IO(S,W)[~ <s,w> 2m <1,w>2q dT dw 

I r7 ,m,q -03 
R" 

where s = rl + i-r . 

Notice the norm 1 . 1  applies to Rn while 11 I[,., applies to 
rl rm, q 3 ,q 

Rn+l 

We define the following function spaces 

Hq = Hq( IRn) = {u(x) : IuIq < a) 



Note that 

Lmsq, we say U has finite spatial 
rl If U is ? subspace of 

codimension if the spaces 

u(t) = {u(t) : W E  u l  

have finite codimension in Hq( IRn) for almost every value of t in 

k+* 

For a vector w the transpose of w will be denoted w r y  and 

will say that w is in a particular function space if each of its 

components is in that function space,this slight ambiquity in nota- 

tion should not cause any difficulty. 

Note the following relations between the classes of pseudo- 

differential operators. 

PSq - c P S S ~ ' ~ ,  and 

PSpm - c PSsmYo for m 5 0 and q > r+,. 

Many of the results for time-singular pseudo-differential operators 

follow from the corresponding results for pseudo-differential operators. 

In particular, the formulae for adjoints and products are essentially the 

same. I f  P(tyxyatyDx) is in PSsmYq then its adjoint P*(t,x,St,Dx) 

has the symbol P*(t,x,s,S) and has  the asymptotic expansion 

acxa ' 
[ X T t  
D D D D? (t,x,s,:) . P*(t,x,s,t> % 1 i 

a 2 0  a! a! 

where the prime on P' represents the matrix transpose. 

-9- 



Also if P E PSs ml'ql and Q E PSs 'm2'q2 then the composition 
m14-9 9 41+42 

P*Q is in PSs and has the symbol 

The next theorem is not needed in the remainder of paper, but it 

should be of use in extending the results of section 4 to variable co- 

efficient systems. 

Theorem 2.1 

operators). 

(Garding's Inequality for time-singular pseudo-differential 

If P(t,x,at,Dx) is in PSs-2qy2q for q - > 0 and 

P(t,x,s,<) = P(t,s,S,C)' - > ~~(<l,s'/(s,S>)~~ then for each positive value 
E of E and r, there is a positive constant c such that 
r 

such And moreover, €or rl > 0 there exist a subspace u of L - W $  
0 

0 rl 

that U has finite spatial codimension and there is a constant c b  such  

that for w in U 

Proof 

Let 6 = <l,t\/<s,<?. Since P = PI we have that for some constant 

bl the symbol 

is positive definite and bounded below by Let be 

the positive square root of P o .  then we have 

-10- 

Proof 

Let 6 = <l,t\/<s,<?. Since P = PI we have that for some constant 

bl the symbol 

2q 7 n  
Po(t,x,s,c) = *(P*+P) - (c0-E)6-= + M6 <l,<>-l 

is positive definite and bounded below by Let be 

the positive square root of P o .  then we have 

-10- 



9 
1- - c-6 9 B-( t ,x , s ,&)  < C-6 

1 0 

Now d e f i n e  t h e  symbols Pi, Bi f o r  i > 0 by 

* * 
&(P+P*) = ( C ~ - E ) ~ ~ ~  + (Bo+,*** ,+Bi - 1> (Bo+,**' ,+Bi-l) + Pi 

and 

B B .  + BiBO = Pi . 0 1  

* , q-i-1 We have Pi,Bi E S s  -q'q-i,and B - Bi E: Ss-' 

t h e  f i r s t  i n e q u a l i t y  of t h e  theore;. 

. For i - > r ,  w e  have 

For t h e  second p a r t  of t h e  theorem, w e  rewrite t h e  f i r s t  i n e q u a l i t y  

as 

-1-12 where K is  t h e  o p e r a t o r  w i th  symbol <1,E;> . 
Since  K is compact as an opera tor  on H'( ttn) , we can w r i t e  K as 

K = K  + F  
U P  

where l K p i q  < p and F has  f i n i t e  rank.  (See e .g .  L i u s t e r n i k  and 

Sobolev [ 5  J .) 
U 

Then t a k i n g  U t o  b e  t h e  kerne l  of F where p is s u f f i c i e n t l y  U' 
smal l ,  w e  have t h e  second i n e q u a l i t y  of t h e  theorem. 

We a l s o  need t h e  fo l lowing  d e f i n i t i o n  f o r  our  subsequent  work. 

D e f i n i t i o n  2 . 3  I f  N is  a n i l p o t e n t  o p e r a t o r  on t h e  f i n i t e  dimensional  

v e c t o r  space Cn, t h e r e  e x i s t s  a basis so t h a t  t h e  m a t r i x  of N has  t h e  

Jordan  form, 

-11- 



m a t  N J2 
* . 

i s  a k. X ki lower Jordan  ma t r ix ,  i .e .  each element of Ji 
1 

where Ji 

is ze ro  excep t  for  t h o s e  e lements  immediately below t h e  main d i agona l .  We 

can assume t h a t  t h e  i n t e g e r s  ki s a t i s f y  

L e t  be  t h e  cor responding  

b a s i s .  

i n  r e v e r s e  l ex iog raph ic  o r d e r  

The rear ranged  Jordan  form i s  t h a t  ob ta ined  by r e o r d e r i n g  t h e  b a s i s  

as j-1. Note a l s o  
i j  

We a l s o  d e f i n e  the degree  of t h e  b a s i s  element e 

t h a t  we  do n o t  r e q u i r e  t h a t  t h e  non-zero e lements  of J i  t o  be  u n i t y .  

111. The Cauchy Problem f o r  Time-Singular Systems 

I n  t h i s  s e c t i o n  w e  w i l l  show t h a t  t h e  Cauchy Problem f o r  t ime-s ingular  

systems is  well-posed. S ince  t h e s e  systems e x h i b i t  t h e  behavior  of bo th  

hype rbo l i c  and e l l i p t i c  systems, w e  w i l l  beg in  by changing t o  a set of 

dependent v a r i a b l e s  i n  terms of which t h e  e q u a t i o n s  s p l i t  i n t o  a hype rbo l i c  

system and a t ime-s ingular  e l l i p t i c  system. 

Consider now t h e  system of equa t ions  (1.1) and l e t  P ( < )  and Q ( E )  

be as g iven  i n  D e f i n i t i o n  1.1. 

are assume t o  be admiss ib l e ,  w e  can modify P(€J and Q ( C )  s o  t h a t  

S ince  t h e  lower o r d e r  t e r m s  i n  equa t ion  (1.1) 

. 

-12- 



(3.1) 

where H(5) is an hxh matrix, N and E([) are lower triangular 

2e X h matrix. In addition, we assume that N is in rearranged 

Jordan form, (Definition 2.3). Note, a l so  by Definition 1.1, E(() 

is non-singular for 151 - > R, for some value of R, and G ( < )  i s  a 

bounded function of 5. 
0 Also we have H( 5 )  and E( 5 )  in S1 and G(< ) in S . 

Now we operate on the system (1.1) on the left with the operator 

P(Dx) , and define by. 

w = Q(D,)G . 

- If we let w1 be the first h components of w and w2 be the 

last 2e components, then we obtain the new system 

1 - 2  hT3 w2 + E ( D  )w2 = -G(Dx)w + F . 
t X 

1 In the case of the system (1.2), note that w is essentially the 

vorticity u - v and w2 is essentially the divergence and the 

pressure p. 

v X 

The first equation in the system ( 3 . 2 )  is a system of hyperbolic 

pseudo-differential equations and therefore we have the estimate (see 

Taylor [lo]). 
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In the wnorm this becomes 

We now consider the second equation in the system (3.2). Let 

2d ' 1 w = (w ,w ,**.W 2 20 21 

where w2j consists of those components of w2 which have degree j 

as determined by the rearranged Jordan form of 

Define the matrix r ( s , c )  by 

N, (Definition 2.3). 

where 6 = <l,[>/<s,E>. The operator E whose symbol is given by 

OY1 has all of its elements in P S s  . Moreover we can construct an 

operator E (at,Dx) in PSs , so that - (-1 0,-1 

and 

. We then have 0,-1 where K2 E PSs  

We thus obtain the estimate 

q+l, where K is a compact operator on H 

-14- 



Since  IC_ is compact, we can write K as K + FE where t h e  

is  less than  & and F2 h a s  f i n i t e  r ank ,  ( L i n s t e r n i k  

E 

Kc norm of  

and Sobolev 1 4 1 ) .  Therefore ,  by r e s t r i c t i n g  r w  t o  an a p p r o p r i a t e  

space  of f i n i t e  s p a t i a l  codimension, and combining t h e  above estimate 

w i t h  t h e  estimate f o r  w1 w e  ob ta in  

2 

( 3 . 3 )  

We summarize t h e  above computations i n  t h e  fo l lowing  theorem. 

Theorem 3.1 The Cauchy Problem f o r  t ime-s ingular  systems is  w e l l -  

posed i n  t h e  s e n s e  t h a t  t h e r e  exist subspaces  l1 and L2 

f o r  q LO, t h a t  have f i n i t e  s p a t i a l  codimension and f o r  

and rF2 E , 1 
w (0) E Hq, 

t h e r e  is  a unique s o l u t i o n  w w i t h  

2 and rw E L ,  , 

and t h e  estimate ( 3 . 3 )  holds.  

IV. The I n i t i a l  Boundary Value Problem 

Consider t h e  system (1.1) i n  the  case where t h e  c o e f f i c i e n t s  a r e  

c o n s t a n t  and w h e r e  R is  t h e  space IR+ X IR". Rewri t ing (1.1) i n  t h e  

c o o r d i n a t e s  ( t , x , y )  where t 2 0,  x 2 0, y E Illn, w e  o b t a i n  

n 
Sw, = AoWx -t 1 Aiw + Bw + F ( t , x , y )  . 

j=1 J J'j 
(4 .1 )  
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On the boundary x = 0, there are boundary conditions 

( 4 . 2 )  T w  = g(t,y) 

and, for simplicity, the initial condition will be 

w(O,x,y) = 0 ( 4 . 3 )  

We assume that the boundary is non-characteristic, that is, 

A. is non-singular. We now re-write equation (4.1) as 

( 4 . 4 )  

We now examine the operator M(at,Dy). Let Ml(at,Dy) be the 

first order operator part of M, i.e. 

Definition 4.1 Let h - and h+ be the number of negative and 

positive roots, respectively, of the following equation in K, 

det I S - A  K I  = 0 . 0 ( 4 . 5 )  

Notice that by Definition 1.1 the roots of equation (4.5) are 

real and that zero is a root of multiplicity 2e. We now consider again 

the polynomial p(s,C) as defined in Definition 1.1. We write 

( 4 . 6 )  0 = p(s,X,(d = det ISs-A - ic A . w . 1  
0 J J  j 

where ~,(X,L)> is a homogeneous polynomial in (Ash)) of degree m. We 

now make another assumption that is often made in the study of elliptic 

boundary value problems, see Agmon, Dougljs, and Nirenberg [l]. 

-16- 
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Assumption 4.1 For each wo 0, the polynomial P2e(X,wo), as a 

polynomial in A ,  has exactly e roots with real part of X positive. 

Note that for n 1, this assunption is automatically satisfied, see 

Agmon, et a1 [l]. 

bolic boundary value problem, see Kreiss [3 ] .  

We also make an assumption that simplifies the hyper- 

Assumption 4.2 The roots s(S> of p(s,E) = 0 are distinct for 

Irl = 1. 

This last assumption can be weakened but it makes the following result 

easier to prove. 

Theorem 4.1 The eigenvalues of the symbol M1(s,u) depend on ( s , ~ )  

in the following manner: 

1) For Res > 0 and w E Rn-(0}, there are h - + e eigenvalues 

eigenvalues with positive real part. with negative real part and h, + e 

2) For Res 0, Is1  2 a > 0 and E 2 I w l  - > 0 there are h 

eigenvalues bounded away from zero in absolute value and 

A satisfying 

2e eigenvalues 

for some positve constants C, and c. 

3) For tu1 - > a > 0 and E > Res - > 0 there are at least 2e 

eigenvalues whose real parts are bounded away from zero, and the remaining 

eigenvalues X satisfy 

-17- 



for some positive constant 62. 

Proof If h is zn eigenvalue of M1(s,w) then 

0 = detlX-M(s,p)l = det A -1 -detlSs-AoX-iA*wl . 
0 

If X were purely imaginary and non-zero, then by Definition 1.1, 

s must also be purely imaginary. So, if s has positive real part 

then either X is zero or has non-zero real part. If, in addition to 

s having positive real part, w is non-zero then Definition 1.1 shows 

that h can not be zero. To determine the precise number of eigenvalues 

with positive real part we will examine X(s,w) for W near zero. 

For W = 0, we have 

0 = detlSs-AoXl = detIS-Ao; X k  I s  . 

So h = K s  where K is satisfies equation ( 4 . 5 ) ,  thus there are h - 
eigenvalues with Re X < 0 and h+ eigenvalues with ReA> 0. To examine 

the remaining 2e eigenvalues that vanish at w = 0, we set w = w'  where 

Iw' I = 1, and consider equation ( 4 . 6 )  as E tends to zero. Let X = EX, 

0 = p(s,X, w ' )  = E 2e s h P2e ( X ' , w ' )  + E 2e+lsh-lp2e+l ( X ' , w ' ) 

2 e+h + - * *  + E p2e+h(h',w') . 

So, for E near zero, there are 2e eigenvalues given hy 

where A '  (LO) satisfies p2e( A' ((;.>,a) = 0. This, by Assumption 4.1, 

proves the first two parts of the theorem. 

The third part of the theorem follows similarly from Assumption 4 .2 .  
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The 

Re 5’ 0, 

eigenvalues of M, (s,U) with negative real parts when 

correspond to that part of the solution of equation (4.1) 
A 

propagating into the region 

of boundary conditions should be 

x > 0, and therefore the correct number 

h - + e. 

Assumption 4 . 3  There are exactly h - + e linearly, independently 

boundary conditions, that is the matrix T(t,y) has rank h - + e 
for all values of (t,y). 

We must now define two types of eigensolutions. The existence of 

eigensolutions for an initial boundary value problem indicates that the 

problem is ill-posed. The eigensolutions represent a family of solutions 

to the initial boundary value problem for which the norm of the solution 

is not bounded by the data. 

Definition 4.2 

boundary value problem (4.1) - ( 4 . 3 )  is a solution W(X,S,U) to the 

ordinary differential equation 

An eigensolution of hyperbolic type for the initial 

satisfying 

a) R e s 2 0  , w #  0 

b) Tw(O,s,w) =: 0 

c) For Res > 0 * w(x,s,w) is bounded for x > 0 ,  and 

for Res = 0 % then 

w ( x , s , w )  = lim w ( x , S+E , W) 

E’O+ 

where for each E ,  W(X,S+E,W) is a bounded solution on x > 0 of 

- w = M1(s+E,u). 
dx 
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We need also to define elliptic eigensolutions. But before doing 
=?. 

so we must define two auxiliary matrix functions G(U) and T(w). 

- - 
Definition 4.3 The matrices M(->) and T(u) are defined by the 

following procedure. 

1. Let P(s,w) be a smooth nonsingular matrix function in a neighborhood 

of L = 0 ,  Is1 = 1, Res - > 0 so that 

is in lower triangular form and fi22(l,0) is a nilpotent 2e x 2e matrix in 

rearranged Jordan form and fill is an h X h matrix. 

3 

2. Construct the 2e x 2e matrix M(w) 

0 otherwise. 

is the element of MZ2 in the ith row and jth column, and (M22,  ij 

di 22 
% 

is the degree of the ith basis element of M ). 

3 .  Let 

where Qo(s,w) is a non-singular, smooth matrix function defined in a 

neighborhood of W = 0 ,  Is1 = 1, Res - > 0. Qo(s,w) is somewhat arbitrary 

but restricted by the condition in part 4. 

4. Define the integers 

c = max(d.-!L ; Tij # 01 i J 



5 

then  the boundary o p e r a t o r  T(w) is given by 

. 
R 

.-. 

Qo(s,cli) i s  chosen so t h a t  t h e  rank of  ?(w) i s  equal  t o  t h e  rank of 

T, and Q,(s,o) = Qoo + o(::/s) where Q is  non-singular .  
00 

D e f i n i t i o n  4.4 An e igensolu t ion  of  e l l i p t i c  t y p e  f o r  t h e  i n i t i a l  

boundary v a l u e  problem 4 . 1  - 4 . 3  c o n s i s t s  o f  a v e c t o r  vo and a 

f u n c t i o n  u(x ,w)  such t h a t  

.-. 
1) vo is i n  the span of t h o s e  e igenvec tors  of Mll(l,O) whose eigen-  

v a l u e s  have n e g a t i v e  r ea l  p a r t .  

2) u(x,w) i s  a s o l u t i o n  t o  t h e  ord inary  d i f f e r e n t i a l  equat ion  

where = 1, and u(x,w) i s  bounded f o r  x 2 0. 

3) The v e c t o r  w(w) = (v , u ( O , O ) ) '  sa t i s f ies  
0 

A s  i n  t h e  Cauchy Problem t h e  e s t i m a t e s  we o b t a i n  w i l l  not  be i n  terms 

of t h e  dependent v a r i a b l e  

mixed h y p e r b o l i c  and e l l i p t i c  charac te r  of t h e  equat ion  (4 .1 ) .  

u(s,u') be a smooth m a t r i x  i n  C'(0) * Rn such t h a t  each element of  

U ( s , w )  is i n  Ssm'q f o r  some m and q ,  and 

w, but r a t h e r  i n  v a r i a b l e s  which e x h i b i t  t h e  

L e t  
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where fil and 8, are lower triangular and of dimension h x h and 

2e x 2e, respectively, and fi ,(s ,~> is zero for IUI f E <s,u>. Moreover, 

we require that fi ( s , O )  

(Definition 2.3), and for 1 0 ;  ' - > (~-E)<s?w> the eigenvalues of k2(s,w) 

are bounded away from the imaginary axis. 

be nilpotent and in rearranged Jordan form, 
2 

Such a matrix U exists because the reduction of a matrix to lower 

triangular form can be made a smooth function of the matrix elements, and 

the various conditions on fi2 and fi3 are easily seen to be possible in 

the light of Theorem 4.1. 

Let v be the first h components of Uw and let u be the last 

2e components. In a way similar to the Cauchy Problem we define the matrix 

r by 

r u  = 
1 2 2  d d  (U0,6U ,6 u ,*-*,€i u ) '  

where d = < l , h ) > / < s , W >  and u j  is the vector containing the components 

of  u which are of degree j as determined by the rearranged Jordan form 

of i q S . 0 ) .  

With these new dependent variables we rewrite (4.4) as 

and the boundary condition becomes 

where Q(at,D,)v is a bounded operator given by 

-22- 
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. 

- 
where Q (s&j) is as i n  Def in i t i on  4 . 3 ,  and r i s  a d iagona l  m a t r i x  

w i t h  

0 

where c is  as i n  D e f i n i t i o n  4 . 3 .  i 

We now g i v e  t h e  main theorem of t h i s  s e c t i o n .  

Theorem 4.2 The i n i t i a l  boundary v a l u e  problem (4.1) - ( 4 . 3 )  is 

well-posed i f  and on ly  i f  t h e r e  are no e i g e n s o l u t i o n s  of e i t h e r  hyper- 

b o l i c  o r  e l l i p t i c  type .  

estimate ho lds  

By well-posed we  mean t h a t  t h e  fo l lowing  

(4.9) 

Note t h a t  t h e  norms apply t o  t h e  boundary x = 0,  and t h e  

norms II II q,o,o apply  t o  t h e  i n t e r i o r ,  x > 0. 

Before proving  Theorem 4 . 2  we state t h e  fo l lowing  theorem which w i l l  

be used t o  prove Theorem 4.2.  
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3 )  if there are no eigensolutions of either hyperbolic or elliptic 

type then there exists a bounded matrix Q ( s , & )  such that 

for some positive constant 

Proof of Theorem 4.2 

Define the norm 11 11 + by 

Then by Theorem 4 . 3 ,  we have for w, a solution of ( 4 . 1 - 4 . 3 ) ,  

a3 W 

c 
Now integrating with respect to T = Ims and w, we obtain the estimate 

( 4 . 9 ) .  

well-posed. 

Therefore, if there are no eigensolutions then the problem is 

Suppose now that there were an eigensolution of hyperbolic type. Since 

I w l  f 0, r 2 E 12e and IQ(S,W)l - > c~(E) so we can ignore the operators 



7 . Q L l U  ..-A Q. If - - f -  w,A,~,d is an eigensolutim of hyperbclic type then by 

using cut-off functions, one can easily show that there are solutions to 

(4.1 - 4 . 3 )  with F and g arbitrarily small in norm and yet have 

;w[? 2 1. Thjs shows (4.1 -4.3) to be ill-posed 

Similarly, if there is an eigensolution of elliptic type, one can 

construct solutions to (4.1 - 4.3) such that 

ITF21 and lQgl all are arbitrarily small. To do this set s = 1 

and .G = E:(I+,. Then one can check that the condition that QTw can 

be made arbitrarily small as E approaches zero,~th ;w! > 1, is that 

there be an eigensolution of elliptic type. 

lwl,, 2 1, but IFl], 

11 - 

Proof of Theorem 4.3 

The construction of the matrix R ( s , w )  for Res - > 0 and 

;..I 2 c < s , O  is essentially the same as the construction in Kreiss [3], 
8 1  (see also Ralston [9]). We only point out that for i c L I  - > E <S,W> 

d we can take Q = I and ignore r since E I - < r - < I. 

We now consider the case I w I  E <s,cc)>. We begin with the matrix 

?l , (s , . . )  as given in equation (4.7). Since M2(s.0) is in rearranged 

Jordan form the matrix 

L 

has all of its off diagonal elements bounded by <l,-+ 

of  M2(s,&~) are bounded by I w l  according to Theorem 
- 

be a nonsingular smooth function of (s,:o) for I _ /  - < 

The eigenvalues 

4.1. Let lJl(s,u) 

E < s , O ,  such that 

Knere  ne eigenvalues of N+ have positive real part and those of N - 

-25- 



have negative real part, in addition N+ and N - are lower triangular. 

Then there are matrices D+ and D- such that 

D + > O  , D - < O  , and 

for some constants c and co, c1 > 0. 1 

Then R2(s,w) is defined as 

R2 = *;(; :).. 

and then R(s,cu) is constructed as 

This proves the first inequality in Theorem 4 . 3 .  

second inequality is satisfied. 

theorem, note that from the above construction of R we have that 

We also see that the 

To establish the third part of the 

+ where v , (resp. v-> is the projection of v on the subspace 

generated by the eigenvectors of M1 having positive (resp. negative) 

real parts. Similarly for (Tu)+ and (ru)-. 

- 



c 

Now, the cond i t ion  th4t t h e r e  are no e i g e n s o l u t i o n s  i s  p r e c i s e l y  

t h e  c o n d i t i o n  t h a t  

Therefore ,  w e  have 

(w,Rw) 1 c+( 
+ 

V 

+ 
V 

t h e  p o s i t i v e  cons t an t  C. 

which shows t h a t  t h e  t h i r d  i n e q u a l i t y  holds .  Th i s  proves Theorem 4.3. 

V.  The I n i t i a l  Boundary Value Problem f o r  t h e  Linear ized  I d e a l  F l u i d  
Equat ions 

I n  t h i s  s e c t i o n  we apply t h e  r e s u l t s  of t h e  preceding s e c t i o n  t o  a 

p a r t i c u l a r  set of equat ions  t h a t  is similar t o  those t h a t  f r e q u e n t l y  arise 

i n  a p p l i c a t i o n s .  These eqiiations are a cons t an t  m e f f i c i e n t  v e r s i o n  of t h e  

i d e a l  f l u i d  equat ions .  

+ fl(t,X,Y) 

v = - a v  - b v  - Py + f2(t’X’Y) 

0 = u + v + f3(t ,X,Y) 

- px u = - a u  - b u  
t X Y (5 .1)  

t X Y 

X Y  
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on the region x - > 0, y €  R, t - > 0 .  The equations are essentially 

the same as equation (1.3), therefore 

detlS - AO~l = det 

2 2  
p(s,<) = (s+i a C,+ibS,) . 

2 
1 + aK 0 

0 
K 0 0 

1 + a~ 0 1 = -K (l+aK) . 

We see that h = 1 and e = 1, and the coefficients a and b must 

be real. To determine how many boundary conditions are needed at the 

Thus we see, by Definition 4.1 and Assumption 4 . 3 ,  if a > 0 then h = 1, - 
so we need two boundary conditions, and if a < 0, then h - = 0 and we 

need only one boundary condition. 

To check the boundary conditions we need to look for eigensolutions of 

hyperbolic and elliptic type. A hyperbolic eigensolution will satisfy the 

ordinary differential equation 

0 -ic, /a 

0 

( jx = (  I ::'a 0 

a i w  -S ' 

where s '  = s + ib w. Two solutions, which are linearly independent for 

s '  + I wla, are 

For elliptic eigensolutions, we set 

G = v + (p+au)i;/s' 
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-kL (l+o(WSl) ..d u = u -  p 
S' 

Then equation (5 .2)  beromes 

-s'/a 0 0 

hl ' . -i 

a i  - -sf (l+p) 

2 where x1 = IWI (ld(U/s')), X2 = - I W I  ( 1 4 ( W / s ' )  and p = O ( W / S ' )  . 
Then an elliptic eigensolution satisfies the ordinary differential 

equation 

(5.4) 

We now consider the boundary conditions themselves. 

Case 1. a < 0. This corresponds to an outflow boundary. We need 

one boundary condition, let it be 

t u + t*v + t p = g(t,y) . 1 3 

First we look for hyperbolic eigensolutions. The only possible eigen- 

solution for a < 0, is 

and substituting this in the homogeneous boundary condition, we have 
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I f  t 3  # 0, then 

Since w e  want Res - > 0 ,  and Res = Res ' ,  t h e  c o n d i t i o n  f o r  a hyper- 

b o l i c  e i g e n s o l u t i o n  i s  

(We w i l l  a l l o w  for  t h e  t i  t o  be  complex f o r  g e n e r a l i t y . )  If t3 = 0, 

t h e  c o n d i t i o n  f o r  a h y p e r b o l i c  e i g e n s o l u t i o n  i s  

t l + i t  2 = O  or  t l - i t 2 = 0  . 

Now we look f o r  e l l i p t i c  e i g e n s o l u t i o n s ,  ( s e e  D e f i n i t i o n  4 . 4 ) .  S i n c e  

a < 0, w e  have 

Rewri t ing t h e  boundary c o n d i t i o n  i n  terms of v ,  u ,  and p w e  have 

= 0 and from equat ion  ( 5 . 4 ) ,  = 0 and p = poe - - I - 4 X s  
0 

* -  

I f  t # 0 ,  then t h e  boundary c o n d i t i o n  i s  3 

t p = O  3 

and t h e r e  i s  no e l l i p t i c  e i g e n s o l u t i o n .  

i s  

I f -  t3  = 0, t h e  boundary c o n d i t i o n  

( t  1.fl - t 2  ilI<,I)p = o 

and t h i s  g i v e s  the same r e s u l t  a s  t h e  h y p e r b o i i c  e i g e n s o l u t i o n  f o r  t = 0. 3 



Collecting OW results, we have t h a t  if 

s o l u t i o n s  of e i t h e r  t ype  when t3 # 0, i f  

a < 0 +,here are no gigen- 

and when t3 = 0 ,  if 

( 5 . 6 )  tl + i t2 # 0 and tl - i t2 # 0. 

Case 2. a > 0. Th i s  corresponds t o  an i n f l o w  boundary. We need 

two boundary c o n d i t i o n s ,  and without l o s s  of g e n e r a l i t y  w e  can t a k e  

them t o  be 

t u + t 2 V  + t p = g l ( t , y )  1 3 

r u + r2v 1 

We f i r s t  look  f o r  hype rbo l i c  e igenso lu t ions .  For s '  + IuIa, t h e  

g e n e r a l  form of a hyperbol ic  e igenso lu t ion  is 

S u b s t i t u t i n g  t h i s  i n t o  t h e  homogeneous boundary c o n d i t i o n ,  we see t h a t  

t h e  cond i t ion  f o r  an e igenso lu t ion  t o  e x i s t  is  t h a t  
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i w a t  + s't2 

iwar + s'r2 

1 / / ~ ( f ~  - iw t2 + (s1-a w )t3 
0 = det 

1 

I f  t r # 0, an eigensolution exists if 3 2  

- Rci(tlr2 - t2r1)/t3r2) + (Tm(a rl/r2)J 2 o , 

i f  t r = 0, an eigensolution exists if 3 2  

tlr2- t r kist r = O  . 2 1  3 1  

For the case when s '  = a I w I  , the general form of a hyperbolic 

eigensolut ion  is 

Substituting this in the homogeneous 

no additional restrictions. 

boundary condition, we arrive at 

We now look f o r  elliptic eigensolutions. Transforming the boundary 

conditions, we have 

2 

, u = O , a n d  - p = p e  -tu lx. 
0 We have by Definition 4 . 4 ,  that 6 # 0 

If t f 0 the boundary condition is 3 



t 3 p  = 0 

r i i + r G = ~ .  1 2 

So f r an eigensolution to 

the boundary condition is 

xist we must have r2 = 0.  

t2G + (tllw(- t2 i w>p = o 

r 3 + (rll,dl- r2 i w>p = o 2 

If t3  = 0, 

and for an eigensolution to exist we need to have 

tlr2 - t2r1 = 0 

Collecting the results for Case 2, we have that there are no 

eigensolutions of either type if, when t3 # 0,then 

and for t3 = 0, then 

tlr2 - t r # 0 . 
2 1  (5.8) 

Summarizing all this, we have the following theorem: 

Theorem 5.1 For the equations 5.1, the boundary conditions give a 

well-posed initial boundary value problem if and only if they are 

equivalent to the following boundary conditions: 
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(5.10) with 

for a > 0 , 

c u + c2 v = g(t,y) 1 

c;+c2 2 # o  , 

(5.11) 

Proof .  By Theorem 4.2, the initial boundary value problem is 

well-posed if and only if there are no eigensolutions of either hyper- 

bolic or elliptic type. 

exist are given by inequalities (5.5) and ( 5 . 6 ) .  If t3 # 0 then 

without loss of generality, let 

c1 = tl - a we have the boundarv condition (5.9).  

inequality (5.6) gives the boundary condition, (5.10) 

If a < 0, the conditions that no eigensolutions 

t3 = 1, then writing c2 = t2, 

If t3 = 0 ,  then 

If a > 0, the conditions for no eigensolutions are inequalities 

(5.7) and (5.8). If t3 = 0, then we can choose t2 = 0, r2 = 1 and 

tl > 0, this is the boundary conditions (5.11) with d = 0. If t3 0, 



t hen  also 

r2 = 1, and 

c = tl, and 

r2 + 0, so withoiit  l o s s  of g e n e r a l i t y  we can choose t3 i 0, 

t2 = 0. 

t3 = d. 

Then (5.7) is t h e  same as (5.11) wi th  r = rl, 

We p o i n t  ou t  t h a t  a s imi l a r  a n a l y s i s  shows t h a t  g i v i n g  t h e  normal 

component of t h e  v e l o c i t y  and t h e  v o r t i c i t y  w = v - u a t  an in f low 

boundary is a well-posed boundary condi t ion .  This  boundary c o n d i t i o n  

i s  t h a t  g iven  by JudoviE [2] .  

X Y  
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